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An Hierarchical VLSI Neural Network Architecture 
R.  Mason, W. Robertson, and D. Pincock 

Abstract-As neural network systems are scaled up in size it 
will become extremely difficult, if not impossible, to maintain 
full connectivity. This paper describes a digital architecture 
which exhibits hierarchical connectivity similar to that ob- 
served in many biological neural networks. At the lowest level, 
clusters of fully connected neurons correspond to subnetworks. 
These subnetworks are then sparsely connected to form the 
complete neural network system. The architecture exploits the 
inherent density and large bandwidth of on-chip RAM and can 
use either a large number of bit-serial processors or a reduced 
number of bit-parallel processors. A prototype chip which im- 
plements a complete subnetwork bas been fabricated in 3-pm 
CMOS and is fully functional. 

I. INTRODUCTION 
EURAL NETWORKS are undoubtedly one of the N fastest growing areas of research today. The under- 

standing and modeling of neural networks and the appli- 
cation of these concepts is both challenging and exciting. 
One of the most promising technologies for implementing 
artificial neural networks (ANN’S) is VLSI. The require- 
ment for multichip (wafer) networks presents a problem 
in that there is a large discontinuity in the levels of con- 
nectivity on chip and off chip. As we scale up the size of 
our networks we are no longer able to support high con- 
nectivity without paying a severe performance penalty for 
multiplexing. The result is a desire for hierarchical net- 
works in which we have highly connected subnetworks 
on chip, with reduced connectivity between these subnet- 
works. 

There is an obvious need to develop new hierarchical 
models, whether they be based on older models or incor- 
porate totally new principles. In a previous publication 
the authors addressed the problem of building hierarchical 
models [l]. In the following discussion they will present 
a hardware architecture that will serve as a substrate for 
hierarchical models. 

In Section I1 the authors describe a 3-pm CMOS im- 
plementation of the architecture using bit-serial process- 
ing and communications. Section I11 summarizes the fab- 
rication results, and in the final section concluding 
remarks are presented along with future work. 

11. NEURAL NETWORK ARCHITECTURE 
The majority of electronic ANN implementations can 

be placed in one of three categories: single processor sys- 

Manuscript received September 12, 1989: revised July 16, 1991. 
The authors are with the Technical University of Nova Scotia, Halifax, 

IEEE Log Number 9103862. 
Nova Scotia B3J 2x4.  

tems that rely on a complex high-speed processor to 
achieve high performance [2], [7], multiprocessor sys- 
tems with a small number of complex processors per chip 
[3], 141, 171, and multiprocessor systems with a larger 
number of simpler processors per chip [5]-[7]. It is with 
this latter category of systems that we will concern our- 
selves. 

Given the present and near-term state of VLSI technol- 
ogy, the number of processors that can be implemented 
on a chip or wafer dictates the use of multiple chips for 
large networks. However, many of the VLSI implemen- 
tations to date take advantage of the high on-chip connec- 
tivity while ignoring the off-chip connectivity constraints 
[51-[71. 

The architecture we have developed contains subnet- 
works of highly connected neurons which correspond to 
chips. Although there are a reduced number of connec- 
tions between chips, the judicious use of multiplexing and 
feedthrough structures maximizes their effectiveness. 

A .  Subnetwork 
Our architecture supports the use of many subnetworks 

with high internal connectivity and relatively sparse ex- 
ternal connectivity. Fig. 1 shows a block diagram of a 
single prototype subnetwork that was implemented in 
3-pm CMOS and contained 12 neurons. 

One of the key attributes of the architecture is the use 
of 256 X 5 on-chip RAM for the WEIGHT MEMORY. 
By placing this memory on-chip we eliminate off-chip de- 
lays and can take advantage of the larger (80 b) internal 
memory bus width. 

The PROCESSOR section generates a weighted sum of 
12 on-chip inputs and four off-chip inputs for each neuron 
one at a time. It is composed of 16 serial/parallel multi- 
pliers which receive 5-b parallel weight values (1 b for 
sign) and 8-b serial inputs. The outputs of the multipliers 
are then accumulated using a tree of 15 one-bit adders. 
The final 16-b weighted sum is then passed to the 
TRANSFER MEMORY. 

The transfer memory is a 64K X 8 off-chip (dashed 
box) table look-up memory which applies an arbitrary 
transfer function to the weighted sum of the inputs, 
thereby generating an 8-b neuronal output. 

The output of the transfer memory is fed into one buffer 
of a 2 x 8 x 12 DOUBLE BUFFERED MEMORY. The 
other buffer contains the previous output states which are 
used by the processor to generate the new outputs. Once 
a complete set of outputs has been generated, the buffers 
switch. 
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Fig. 1 .  Block diagram of prototype subnetwork implemented in 3-pm 
CMOS. 

In addition to being fed to the processor section, the 
previous outputs pass serially through a 16 X 4 crossbar 
(XBAR) SWITCH (each of the four outputs can be any 
one of the 16 inputs). The crossbar switch, under the con- 
trol of the 12 x 16 crossbar (XBAR) MEMORY, selects 
on a cycle-by-cycle basis which outputs are to be passed 
off chip. 

This multiplexing of outputs maximizes connectivity as 
each neuron can now have a different set of off-chip inputs 
in addition to inputs from any of the neurons within the 
subnetwork. The crossbar switch outputs can also be in- 
dependently tri-stated which provides additional flexibil- 
ity for busing structures between subnetworks. Another 
feature is four feedthrough connections that pass directly 
from the inputs through the crossbar switch to the outputs. 
This allows us to make a limited number of global con- 
nections by passing neuron outputs through one or more 
subnetworks. 

The local controller provides overall control of the sub- 
network and also provides an interface to the global con- 
troller for functions such as downloading weights, down- 
loading crossbar memory, and reading neural outputs. 

B. Network 

At the highest level, subnetworks may be connected in 
various topologies that would be tailored to the specific 
application. A single-bus architecture (see Fig. 2(a)) 
would provide direct connectivity between all the subnet- 
works. However, as the number of subnetworks grows 
there would be undue competition for the available con- 
nections. A mesh architecture (see Fig. 2(b)) would pro- 
vide high connectivity to nearest neighbors with connec- 
tivity to nonneighbors dependent on available feedthrough 
paths. 

The global controller is responsible for host interfac- 
ing. Through the control bus it supervises all the local 
(subnetwork) controllers. External inputs to the network 
can be fed directly to the inputs of subnetworks or can be 
allocated positions in the previous output buffer and 
downloaded through the dobal and local controllers. 
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Fig. 2 .  Block diagram showing possible high-level network topologies: (a) 
conventional single-bus architecture, and (b) mesh architecture. 

C. Learning 
In most learning procedures a large part of the calcu- 

lations involves multiply and accumulate operations. For 
the above implementation the intent is to use the parallel 
hardware as a learning accelerator. 

The procedure would consist of the host downloading 
weights and inputs , the subnetworks performing the mul- 
tiply-accumulate operations, and the host then uploading 
the results before performing the remainder of the Iearn- 
ing algorithms. In this type of configuration the control 
bus becomes the obvious bottleneck, however, multiple 
control buses are possible as seen in Fig. 2(b). 

Applications that require maximum learning speed dic- 
tate the use of more complex on-chip processors. Given 
the wide variety of learning procedures, design of the pro- 
cessing sections involves numerous trade-offs, especially 
when a number of different models are to be run on the 
same type of hardware. This is presently one of our key 
areas of activity. 

111. FABRICATION RESULTS 

The final design has over 27K transistors and occupies 
a 195-mil X 180-mil die. The chip was fabricated through 
the Canadian Microelectronics Corporation implementa- 
tion service and Northern Telecom Canada (see Fig. 3). 

Subsequent testing on a batch of five test chips revealed 
that two were fully functional. Due to overloading on two 
critical nets, the maximum operating frequency was lim- 
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Fig. 3. Microphotograph of prototype subnetwork 

ited to 5.3 MHz as compared to the maximum 10-MHz 
simulation frequency (room temperature). This gave a 
overall nonlearning performance of 7.1 -million connec- 
tions per second (CPS) for this small prototype chip. We 
are presently evaluating the learning performance for a 
number of common models. 

I v .  CONCLUSIONS AND FUTURE WORK 

Although our first implementation of the architecture is 
modest in scale, it has given us a practical demonstration 
of the architecture and insights into future implementation 

details. It has also laid all the groundwork for control 
structures and interfaces for larger systems. Our estimates 
indicate that a 1K-neuron subnetwork with 100 inputs and 
outputs and a nonlearning performance of over 2.3-billion 
CPS could be incorporated on a single chip (assuming 64- 
Mb DRAM technology, 8-b weights, and a 25-MHz 
clock). 

This compares favorably to the 1.6 GCPS quoted for 
the CNAPS chip from Adaptive Solutions Inc. [8]. There 
are, off course, major differences in the architectures in 
terms of processing functionality, number of on-chip 
weights, etc. 

We are presently constructing a board-level network 
that will incorporate 16 subnetworks, as well as the global 
controller and host interfaces. In addition, we are evalu- 
ating a number of learning procedures and models to de- 
termine optimum processing structures and subnetwork 
topologies. This will be driven initially by our own ap- 
plications with an attempt to maintain some generality. 
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